Time dependent Pinch analysis with sensor data and unsupervised learning algorithms
نویسندگان
چکیده
Abstract Heat integration is essential for energy efficiency and operational cost reduction in energy-related applications. Pinch Analysis a heat model that has attracted lot of attention over the past few decades. Although method been successfully applied to many industrial processes, it also shown have limitations. One these limitations only considers average values physical quantities process, therefore not suitable studying dynamic processes undergo variations their operating conditions. Attempts made improve circumvent this limitation, but they found oversimplify result unrealistic solutions. The purpose work use sensor data unsupervised learning algorithms extend processes. Specifically, we time series segmentation detect changes process conditions clustering group similar segments. approach real case. We compare performance exchanger network with without analysis. solutions obtained our methodology improves waste recovery by 20% while reducing 31%.
منابع مشابه
Data-Dependent Analysis of Learning Algorithms
This thesis studies the generalization ability of machine learning algorithms in a statistical setting. It focuses on the data-dependent analysis of the generalization performance of learning algorithms in order to make full use of the potential of the actual training sample from which these algorithms learn. First, we propose an extension of the standard framework for the derivation of general...
متن کاملContext-Dependent Data Envelopment Analysis-Measuring Attractiveness and Progress with Interval Data
Data envelopment analysis (DEA) is a method for recognizing the efficient frontier of decision making units (DMUs).This paper presents a Context-dependent DEA which uses the interval inputs and outputs. Context-dependent approach with interval inputs and outputs can consider a set of DMUs against the special context. Each context shows an efficient frontier including DMUs in particular l...
متن کاملUnsupervised Learning with Permuted Data
We consider the problem of unsupervised learning from a matrix of data vectors where in each row the observed values are randomly permuted in an unknown fashion. Such problems arise naturally in areas such as computer vision and text modeling where measurements need not be in correspondence with the correct features. We provide a general theoretical characterization of the difficulty of “unscra...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملUnsupervised Ensemble Learning with Dependent Classifiers
In unsupervised ensemble learning, one obtains predictions from multiple sources or classifiers, yet without knowing the reliability and expertise of each source, and with no labeled data to assess it. The task is to combine these possibly conflicting predictions into an accurate metalearner. Most works to date assumed perfect diversity between the different sources, a property known as conditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2430/1/012001